Lecture 1

Introduction to algorithms and data structures
Today’s plan

1. What is an algorithm
2. word RAM model of computation, complexity of an algorithm
3. Elementary data structures: array, list, queue, stack
4. Dynamic array
What is an algorithm

Muhammad ibn Musa al-Khwarizmi, c. 780-850
An algorithm is a sequence of elementary operations that transforms the input into the output.
Algorithms

Primality test

\[f(n) = \begin{cases}
1, & \text{if } n \text{ is prime} \\
0, & \text{otherwise}
\end{cases} \]
Applications of prime numbers

The **RSA encryption system** is one of the most widely used methods of securely transmitting information.

It relies on large prime numbers, that are extremely hard to find.

Open Problem 1: Mersenne prime

Find a new prime of form $2^n - 1$ that has at most $100,000,000$ digits. You can **win** USD $3000!
Algorithms

• **Ideal algorithm:** simple to implement, fast, uses little memory.

• To design such algorithms, we need a simple, realistic **model of computation**. The model should not depend on programming languages.
word RAM model

Charles Babbage. The Analytical Engine.
word RAM model

Elementary operations: basic arithmetic and bitwise operations on registers, conditionals (if-then), goto, copying words between registers and main memory, malloc (add an extra memory word), halt

NB! $w \approx \log n$, where n is the input size
Complexity of an algorithm

Two main resources: time and space

- $Time(n) = \text{the maximum number of elementary operations used for an input of size } n$
- $Space(n) = \text{the maximum number of memory words used for an input of size } n$
Primality test

for \(i \leftarrow 2 \) to \(n - 1 \) do

\[\text{mult} \leftarrow i \]

while \(\text{mult} < n \) do

\[\text{mult} \leftarrow \text{mult} + i \]

if \(\text{mult} = n \) then

return 0

return 1

\[f(n) = \begin{cases}
1, & \text{if } n \text{ is prime} \\
0, & \text{otherwise}
\end{cases} \]

Space: \(c_1 \) (number of registers + 3)

Time: \(\leq c_2 \cdot \sum_{i=2}^{n-2} \frac{n}{i} \leq c_2 \cdot n \ln n \)
Complexity: asymptotic

- Often, it is hard to compute the constants exactly

- We will mainly study the asymptotic growth
\textbf{$O()$, $\Omega()$, $\Theta()$ notation}

Let $f(n), g(n) \in \mathbb{N} \rightarrow \mathbb{R}^+$

- We say that $f(n) \in O(g(n))$ (or $f(n) = O(g(n))$) if
 \[
 \exists n_0 \in \mathbb{N}, c \in \mathbb{R}_+ : \forall n \geq n_0 \quad f(n) \leq c \cdot g(n)
 \]

- We say that $f(n) \in \Omega(g(n))$ (or $f(n) = \Omega(g(n))$) if
 \[
 \exists n_0 \in \mathbb{N}, c \in \mathbb{R}_+ : \forall n \geq n_0 \quad f(n) \geq c \cdot g(n)
 \]

- We say that $f(n) \in \Theta(g(n))$ (or $f(n) = \Theta(g(n))$) if
 \[
 \exists n_0 \in \mathbb{N}, c_1, c_2 \in \mathbb{R}_+ : \forall n \geq n_0 \quad c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)
 \]
Primality test

for $i \leftarrow 2$ to $n - 1$ do

 $mult \leftarrow i$

 while $mult < n$ do

 $mult \leftarrow mult + i$

 if $mult = n$ then

 return 0

 return 1

$f(n) = \begin{cases}
1, & \text{if } n \text{ is prime} \\
0, & \text{otherwise}
\end{cases}$

Space: $c_1 = O(1)$ (number of registers + 3)

Time: $\leq c_2 \cdot \sum_{i=2}^{n-2} \frac{n}{i} \leq c_2 \cdot n \ln n = O(n \log n)$
Asymptotic complexity vs real efficiency

- Asymptotic complexity **matters.** A $\Theta(n)$-time algorithm is slower than a $\Theta(\log n)$-time algorithm if n is large enough.

- An algorithm with time complexity $\Theta(n^2)$ can be faster than an algorithm with time complexity $\Theta(n)$ for all reasonable values of n if the hidden constant in $\Theta(n)$ is too large.

- Sometimes, the time (or the space) complexity is high, but the **inputs** on which this complexity is reached are very rare in practice.

- The **programming language** used has a real impact on performance.
Linear vs binary search in a sorted sequence

Given a sequence of integers $a_1 \leq a_2 \leq \ldots \leq a_n$ and an integer x, return 1 if $x = a_i$ for some i, and 0 otherwise.

- Linear search algorithm: $\Theta(n)$ time
- Binary search algorithm: $\Theta(\log n)$ time
Linear vs binary search in a sorted sequence
Linear search in a sorted sequence: Python vs C
Elementary data structures

Rivers and Tides: Andy Goldsworthy’s project by T. Riedelsheimer
Data structures

• Imagine that we have a collection of objects, i.e. a database of DNA sequences

• We must be able to quickly extract all sequences that have a certain property (i.e. contain a certain gene)

• Scanning the whole database each time is too expensive

• Solution: preprocess the database and store certain information about it in an organised form

• This form is called a data structure
Data structures

We care about:

• the space the data structure occupies
• construction time
• query time
• update time
Elementary data structures

- array (tableau)
- linked list (liste chaînée)
- queue (file)
- stack (pile)
Array, list, queue, stack

Data structures storing a sequence $e_0, e_2, \ldots, e_{n-1}$ of elements (e.g., integers, floating-point numbers, complex objects, etc.)

Diverse specifications of such a structure, allowing different operations, with different efficiency:

- **Random access**: given i, access e_i
- **Access** the first element (e_0), the last element (e_{n-1})
- **Insertion** at the beginning (before e_0), at a random position (between e_i and e_{i+1}), at the end (after e_{n-1})
- **Deletion** of the first element (e_0), of a random element (e_i), of the last element (e_{n-1})
Array

- Contiguous memory area of a fixed size, pre-allocated
- Random access in $O(1)$ time
- Insertion, deletion impossible
- Corresponds to **classic arrays** of programming languages:
 - bracketed arrays in C or Java
 - std::array in C++ 2011
 - numpy.array in Python
Linear and binary search in a sorted array

Given an integer x, return 1 if $e_i = x$, and 0 otherwise

Linear search

```
for i ← 0 to n − 1 do
    if $e_i = x$ then
        return 1
    return 0
```

Time = $O(n)$

Space = $O(1)$
Linear and binary search in a sorted array

Given an integer x, return 1 if $e_i = x$, and 0 otherwise

Linear search

\[
\begin{array}{c}
\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \\
\quad \text{if } e_i = x \text{ then} \\
\qquad \text{return 1} \\
\text{return 0}
\end{array}
\]

Time = $O(n)$

Space = $O(1)$
Linear and binary search in a sorted array

Given an integer x, return 1 if $e_i = x$, and 0 otherwise

Linear search

for $i \leftarrow 0$ to $n - 1$ do
 if $e_i = x$ then
 return 1
 return 0

Time = $O(n)$
Space = $O(1)$
Linear and binary search in a sorted array

Given an integer x, return 1 if $e_i = x$, and 0 otherwise

Linear search

```
for i ← 0 to n − 1 do
  if $e_i = x$ then
    return 1
  return 0
```

Time = $O(n)$
Space = $O(1)$
Linear and binary search in a sorted array

Given an integer x, return 1 if $e_i = x$, and 0 otherwise

```
for i ← 0 to n − 1 do
  if $e_i = x$ then
    return 1
  return 0
```

Time = $O(n)$
Space = $O(1)$
Linear and binary search in a sorted array

Given an integer x, return 1 if $e_i = x$, and 0 otherwise

Binary search

\[
l \leftarrow 0, r \leftarrow n - 1
\]

\[
\text{while } l \leq r \text{ do}
\]

\[
m \leftarrow \left\lfloor \frac{l + r}{2} \right\rfloor
\]

\[
\text{if } e_m = x \text{ then}
\]

\[
\text{return 1}
\]

\[
\text{else if } e_m < x
\]

\[
l = m + 1
\]

\[
r = m - 1
\]

\[
\text{else if } e_m > x
\]

\[
\text{return 0}
\]

\[\sqrt{3}\]?

Time = $O(\log n)$

Space = $O(1)$

At each step, the search area shrinks by a factor of at least two.
Linear and binary search in a sorted array

Given an integer x, return 1 if $e_i = x$, and 0 otherwise

Binary search

\[
\begin{array}{c}
\text{Binary search} \\
\begin{array}{cccc}
1 & 2 & 2 & 5 & 5 \\
\end{array} \\
\begin{array}{c}
l \\
r \\
\end{array} \\
\end{array}
\]

\[\sqrt{3}?\]

At each step, the search area shrinks by at least two times.

Time = $O(\log n)$

Space = $O(1)$
Linear and binary search in a sorted array

Given an integer x, return 1 if $e_i = x$, and 0 otherwise.

Binary search

1. $l \leftarrow 0$, $r \leftarrow n - 1$
2. while $l \leq r$ do
 1. $m \leftarrow \lfloor \frac{l + r}{2} \rfloor$
 2. if $e_m = x$ then
 1. return 1
 3. else if $e_m < x$
 1. $l = m + 1$
 4. else if $e_m > x$
 1. $r = m - 1$
 5. return 0

Time = $O(\log n)$

Space = $O(1)$

At each step, the search area shrinks by at least two times.
Doubly linked list

- The head and the tail can be accessed in $O(1)$ time
- Random access in $O(n)$ time
- Insertion at head / deletion in $O(1)$ time
- In programming languages: std::list in C++
Doubly linked list

Insert(L, x)

\[
\begin{align*}
 x\.next & \leftarrow L\.head \\
 \text{if } L\.head \neq NIL \text{ then} & \\
 L\.head\.prev & = x \\
 L\.head & \leftarrow x \\
 x\.prev & = NIL
\end{align*}
\]

Delete(L, x)

\[
\begin{align*}
 & \text{if } x\.prev \neq NIL \text{ then} \\
 & x\.prev\.next \leftarrow x\.next \\
 \text{else } L\.head & \leftarrow x\.next \\
 & \text{if } x\.next \neq NIL \\
 & x\.next\.prev \leftarrow x\.prev
\end{align*}
\]
Stack (or LIFO for last-in-first-out)

- Abstract data structure that can be implemented in different ways, e.g. with a linked list
- Access to the top element (peek) in $O(1)$ time
- Insertion to the top (push) in $O(1)$ time
- Deletion of the top element (pop) in $O(1)$ time
- In programming languages:
 - `std::stack` in C++
 - not explicit in Python, but standard lists can be used
Stack (or LIFO for last-in-first-out)

Open problem 2: Optimum Stack Generation
Given a finite alphabet Σ and a string $X \in \Sigma^n$. Find a shortest sequence of stack operations push, pop, peek that prints out X. You must start and finish with an empty stack.

The current best algorithm by Bringmann et al. solves the problem in $\tilde{O}(n^{2.8603})$ time. Can it be done faster?
Queue (or FIFO for first-in-first-out)

- Abstract data structure that can be implemented in different ways, e.g., with a doubly linked list
- Access to the elements in the back / front in $O(1)$ time
- Deletion from the front (dequeue) and insertion to the back (enqueue) in $O(1)$ time

In programming languages:
- std::queue in C++
- not explicit in Python, collections.deque can be used
Dynamic array
Dynamic array

- We saw that an array allows $O(1)$-time random access, but no insertions.

- A list allows insertions in $O(1)$ time, but random access can take $\Omega(n)$ time.

- We want to develop a data structure that allows both fast random access and insertions.
Dynamic array

- Pointer towards a classic array of capacity $c +$ the number of elements $n \leq c$ stored
- Random access in $O(1)$ time
- Insertion at the end in amortised $O(1)$ time (see further)
- **In programming languages:**
 - std::vector in C++
 - lists and array in standard Python, or numpy.ndarray
Dynamic array: insertion at the end

Input: array A of capacity c and size n, element x

Output: array A of size $n + 1$ with $A[n] = x$

if $n = c$ then
 allocate new array A' of size $\max\{2c, 1\}$
 for $i \leftarrow 0$ to $n - 1$ do
 $A'[i] \leftarrow A[i]$
 deallocate array pointed by A and make A point to A'
 $c \leftarrow \max\{2c, 1\}$
 $A[n] \leftarrow x$
 $n \leftarrow n + 1$
Dynamic array: insertion at the end

- In the worst case, we can spend $\Theta(n)$ time to insert an element (when $n = c$)
- However, any n insertions take $O(n)$ time
- We say that each insertion takes $O(1)$ amortised time
- **NB!** We measure the average performance of each insertion in the worst case
Potential method: idea

Consider a sequence of \(n \) operations \(o_1, o_2, \ldots, o_n \) that take time \(t_1, t_2, \ldots, t_n \)

Let \(D_0 \) be the initial data structure and \(D_i \) be the data structure after applying the \(i \)-th operation \(o_i \) to \(D_{i-1} \)

Associate a potential \(\Phi(D) \) (real number) to a data structure \(D \)

Define \(\hat{t}_i = t_i + \Phi(D_i) - \Phi(D_{i-1}) \)

Then \(\sum_{i=1}^{n} \hat{t}_i = \sum_{i=1}^{n} t_i + (\Phi(D_n) - \Phi(D_0)) \)

If \(\Phi(D_n) \geq \Phi(D_0) \), then \(\sum_{i=1}^{n} \hat{t}_i \geq \sum_{i=1}^{n} t_i \)
Potential method: Dynamic array

Time of the i-th insertion $t_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2} \\ 1 & \text{otherwise} \end{cases}$

Potential $\Phi(D) = 2 \times (\text{number of elements}) - \text{capacity}$

$\hat{t}_i = t_i + \Phi(D_i) - \Phi(D_{i-1}) = 3$ (see blackboard)

Therefore, $\sum_{i=1}^{n} t_i \leq \sum_{i=1}^{n} \hat{t}_i = 3n = O(n)$
Insertion in a std::vector in C++

![Graph showing cumulative time vs. number of inserted elements]

- Cumulated time (s) on the y-axis.
- Number of inserted elements on the x-axis, marked with powers of two (2^20, 2^21, 2^22, 2^23, 2^23 * 10^7).

The graph illustrates the time taken to insert elements into a std::vector as the number of elements increases.
Next lecture

- Divide and conquer
- Analysis of recursive algorithms
- Master theorem
- Fast multiplication of polynomials
- Discrete Fourier transform

(Thank you!)