1 (From Last Lecture) Red–black binary trees (13)

- Red–black trees. Properties of red–black trees:
 - The root is black.
 - If a node is red, its children are black.
 - Same number of black nodes on every path from one node to its descendants with 0 or 1 child.

- Example 13.4 (without the z node)

- Bound (proved last week): $h = O(n)$

- Left rotation, right rotation

- Insertion in a red–black tree:
 - Insertion of z at its natural position, red colored
 - Correction of red–black violation between z and its parent:
 * If z is the root, we color it in black.
 * If z’s parent is black, nothing to do.
 * If z’s parent is red (and thus its grandparent is black):
 - Deal with the case where z’s parent is a left child, the other case is symmetric
 - If the uncle of z is red, it is colored in black together with z’s parent, and the grandparent is colored in red. Recursively process the grandparent.
 - Else, if z is a right child, we left-rotate z and its parent and consider the new left child of z and move to the following case.
 - z is a left child, we color its parent in black and its grandparent in red, then right-rotate z’s parent and z’s grandparent. Done.
 - Complexity

- A word on deletion, no detail
2 Disjoint-set data structures (21)

- Data structure, basic operations: MakeSet, FindSet, Union
- Example application: connected components in a dynamic graph
- Data structure: forest with roots representative elements
- Sequence of m operations including n MakeSets
- First idea: shallow forest; complexity
- Better idea: weighted union heuristics; complexity
- Two heuristics:
 - Union by rank
 - Path compression
- Non-tight complexity analysis: proof of $O(m \log^* n)$:
 - Basic properties:
 * Rank of a node doesn’t change when not root any more
 * Rank of a node < rank of its parent
 * At least 2^r nodes in a subtree with rank-r root at the time it got its rank
 * Maximum number of nodes of rank r: $\frac{n}{2^r}$
 * Number of nodes of rank in $[k, 2^k)$ at most $\frac{n}{2^k}$
 - Count the total complexity of finds by counting the number of child-parent pairs encountered:
 * that are in different buckets
 * that are in the same buckets (rank of a child remains constant!)
- Mention the tight complexity analysis: $O(m \alpha(n))$. Implications.
- How to get all elements in a set?