Call the roll. Preliminary questions?

1 Introduction

• Sets, maps
• Corresponding data structures in Python, C++, Java
• Simple implementation: array; size and space complexity

2 Hash tables (11)

• Hashing space of size m, hash function
• Hash table: buckets, chaining for collisions
• Get, Insert, Delete
• Complexity in the worst case; complexity under uniformity assumption in terms of load factor $\alpha = \frac{n}{m}$
• Designing hash functions
 – Using modulo arithmetics (careful of patterns)
 – Universal hashing (the number of functions in H s.t. $h(k) = h(l)$ for any distinct k, l is $\leq \frac{|H|}{m}$); complexity
 – Choosing a set of universal functions: $h_{a,b} = ((ak + b) \mod p) \mod m$ for $p > m$ prime number, $a \in \mathbb{F}_p \neq 0$, $b \in \mathbb{F}_p$
• Open addressing:
 – linear probing $h(k, i) = (h'(k) + i) \mod m$; disadvantages
 – double hashing $h(k, i) = (h_1(k) + i \times h_2(k)) \mod m$ with $(h_2(k), m)$ relatively prime; number of distinct hashing sequences
• Dynamic hash tables:
 – Size doubling
 – Linear hashing, only mentioned
3 Red–black binary trees (13)

- Reminder on (balanced) binary search trees
- Red–black trees. Properties of red–black trees:
 - The root is black.
 - If a node is red, its children are black.
 - Same number of black nodes on every path from one node to its descendants with 0 or 1 child.

- Example 13.4 (without the z node)
 - Bound: $n \geq 2^{bh(x)}$ and $bh(x) \geq \frac{h-1}{2}$

- Left rotation, right rotation
- Insertion in a red–black tree:
 - Insertion of z at its natural position, red colored
 - Correction of red–black violation between z and its parent:
 * If z is the root, we color it in black.
 * If z’s parent is black, nothing to do.
 * If z’s parent is red (and thus its grandparent is black):
 · Deal with the case where z’s parent is a left child, the other case is symmetric
 · If the uncle of z is red, it is colored in black together with z’s parent, and the grandparent is colored in red. Recursively process the grandparent.
 · Else, if z is a right child, we left-rotate z and its parent and consider the new left child of z and move to the following case.
 · z is a left child, we color its parent in black and its grandparent in red, then right-rotate z’s parent and z’s grandparent. Done.

- Complexity
- A word on deletion, no detail
- Balanced binary search trees vs hash tables