Recursion, memoization, dynamic programming

L3 Algorithmics and Programming

Pierre Senellart

11 October 2018
Outline

Recursion

Memoization

Dynamic programming
When should one use recursion?

A problem P can be solved by recursion when:

- It can be parameterized by one or several integers $P(n_1 \ldots n_k)$
- The solution of $P(n_1 \ldots n_k)$ can be obtained from the solution of $P(n_1^{(1)} \ldots n_k^{(1)}) \ldots P(n_1^{(\ell)} \ldots n_k^{(\ell)})$ for some $\ell \geq 1$ with, for all $1 \leq i \leq \ell$, $n_j^{(i)} \leq n_j$ for $1 \leq j \leq k$, one of these inequalities being strict ($\forall i, \exists j, n_j^{(i)} < n_j$): recursive case
- $P(0 \ldots 0)$ (or $P(n_1 \ldots n_k)$ with n_i “small” depending on the case) easy to compute: base case
Example 1: Factorial

- $P(n) = n!$
- $k = 1, \ell = 1$
- $P(n) = n \times P(n - 1)$ for $n \geq 1$
- $P(0) = 1$
Example 2: Fibonacci

- $P(n)$ nth Fibonacci number
- $k = 1, \ell = 2$
- $P(n) = P(n - 1) + P(n - 2)$ for $n \geq 1$
- $P(0) = 1, P(1) = 1$
Example 3: Levenshtein edit distance

\(d(s, s')\) edit distance (minimal number of characters to add, remove, modify) to go from \(s\) to \(s'\).

- \(P(n_1, n_2)\) edit distance between the prefix of length \(n_1\) of \(s\) and the prefix of length \(n_2\) of \(s'\)
- \(k = 2, \ell = 3\)
- \(P(n_1, n_2) = \min \left(P(n_1 - 1, n_2) + 1, P(n_1, n_2 - 1) + 1, P(n_1 - 1, n_2 - 1) + \mathbb{I}_{s_{n_1} \neq s'_{n_2}} \right)\) for \(n_1 \geq 1, n_2 \geq 1\)
- \(P(n_1, 0) = n_1\) for \(n_1 \geq 0; P(0, n_2) = n_2\) for \(n_2 \geq 0\).

\(\mathbb{I}_b\) is 1 if \(b\) is true, 0 otherwise
Implementation

- Recursive function

```plaintext
function P(n_1, \ldots, n_k);
if base case then
    \ldots;
    return \ldots;
else
    // recursive case
    \ldots;
    // \ell calls to P
    return \ldots;
end
```

- One says recursion is terminal if \(\ell = 1 \) and the call to \(P \) in the last instruction of the recursive case \((\text{return} P(n'_1, \ldots, n'_k))\)

- NB: On the example above, the `else` can be omitted.
Complexity

- **Upper bounds** (sometimes better than that, e.g., if recursive call is on $\frac{n}{2}$ and not on $n - 1$):
 - If $\ell = 1$: $O(n_1 + \cdots + n_k)$: often acceptable
 - If $\ell > 1$: $O(\ell^{n_1 + \cdots + n_k})$: often unreasonable

- Be wary of memory used on the stack: $O(\sum_{i=1}^{k} n_i)$ (usually, memory allocated to the stack varies from hundreds of kilobytes to a few megabytes).

- When recursion is terminal, the compiler may be able to eliminate recursion, and therefore stack space requirements.
Outline

Recursion

Memoization

Dynamic programming
Idea (1/3)

Cache: global object (or static, or class member) that remembers results from function P from one call to another
function \(P(n_1, \ldots, n_k) \);
if \(M(n_1, \ldots, n_k) \) is defined then
 return \(M(n_1, \ldots, n_k) \);
end

if base case then
 \ldots;
 \(r \leftarrow \ldots; \)
else
 // recursive case
 \ldots;
 // \(l \) calls to \(P \)
 \(r \leftarrow \ldots; \)
end
\(M(n_1, \ldots, n_k) \leftarrow r; \)
return \(r; \)
Idea (3/3)

- Terminal recursion is impossible!
- Data structure: multi-dimensional array or associative array (map) implemented as a balanced search tree or as a hash table (cf. upcoming lecture)
- Use a classic array when parameters are integers with contiguous values, use an associative array otherwise
- Array can generally be statically allocated when one has an a priori upper bound on parameter sizes
Complexity

- $O(n_1 \times \cdots \times n_k \times \ell)$ operations
- $O(n_1 \times \cdots \times n_k)$ memory used on the heap (space used depends on data structure)
- $O(n_1 + \cdots + n_k)$ memory used on the stack
- No useless computation!
Outline

Recursion

Memoization

Dynamic programming
Idea

- **Iterative computation**
- One builds a matrix (multi-dimensional array) $n_1 \times \cdots \times n_k$ that is iteratively filled, bottom up

```plaintext
function P(n_1, \ldots, n_k);
  M \leftarrow \text{matrix}(n_1, \ldots, n_k);
  // fill $M$ with base cases
  \text{for } i_1 \leftarrow 1 \text{ to } n_1 \text{ do }
    \ldots;
    \text{for } i_k \leftarrow 1 \text{ to } n_k \text{ do }
      \ldots;
      M(i_1, \ldots, i_k) \leftarrow \ldots;
      // use precomputed values
  end
end
return M(n_1 \ldots n_k);
```
Complexity

- $\Theta(n_1 \times \cdots \times n_k \times \ell)$ operations
- $\Theta(n_1 \times \cdots \times n_k)$ memory used on the heap
- $O(1)$ memory used on the stack
- Sometimes too many operations!
Memoization vs dynamic programming

- The two techniques *roughly amount to the same thing*
- **Pro of memoization**: only necessary computations are made (the matrix is not fully filled)
- **Con of memoization**: recursive calls have a small overhead (wrt imperative style) and use the call stack (limited in size)
- The behavior of dynamic programming can be simulated with memoization
- For some complex cases, one can simulate recursive calls with a stack maintained within the heap