Call the roll. Preliminary questions?

1 Brute force

- Exhaustive exploration
- Examples: linear search, sort
- Often possible, always consider before discarding the option
- Sometimes the only solution
- Sometimes very small constant, ok for small input sizes

2 Divide and Conquer (4.1, 4.2)

- Historical origin (*Divide et impera*, attributed to Philip II of Macedon, used in politics, in military strategy)
- In computer science: divide, process recursively, merge
- Often allows (but not always) saving time

2.1 Example: binary search

2.2 Example: matrix multiplication

- Standard algorithm
- Naïve divide and conquer, superficial analysis, recurrence formula
- Mention Strassen algorithm and its recurrence formula

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1; \\
7T(\frac{n}{2}) + \Theta(n^2) & \text{if } n > 1.
\end{cases}
\]
3 Analyzing Recursive Algorithms (4.4)

- Simplifying assumption of powers of 2 (or of another number), not critical
- Recurrence trees for binary search, naïve matrix multiplication, Strassen ($\log_2 7 \approx 2.807$)
- Practical use of Strassen algorithm

4 Master theorem (4.5 et 4.6)

\[T(n) = aT\left(\frac{n}{b}\right) + f(n). \]
Let \(c = \log_b a \).

1. If \(f(n) = O(n^{c'}) \) with \(c' < c \): \(T(n) = \Theta(n^c) \).
2. If \(f(n) = \Theta(n^c \log^k(n)) \): \(T(n) = \Theta(n^c \log^{k+1}(n)) \);
3. If \(f(n) = \Omega(n^{c'}) \) with \(c' > c \) and if \(af\left(\frac{n}{b}\right) \leq \alpha f(n) \) for \(\alpha < 1 \) with \(n \) large enough: \(T(n) = \Theta(f(n)) \).

- Not a trichotomy
- Examples of uses
- One still assumes \(n \) is a power of \(b \)
- Generalized by Akra–Bazzi (non-equal input size)
- Proof! Essentially, Lemma 4.3 of textbook

5 Fast Polynomial Multiplication, Discrete Fourier Transform (30)

- Problem
- Naïve method, \(O(n^2) \)
- Representation as sets of points, proof scheme
- \(n \)th roots of 1
- Discrete Fourier transform (DFT) – connection with signal processing
- Fast Fourier transform: decomposition in even/odd components, DFT from these two decompositions, high-level algorithm scheme
- Complexity analysis with the master theorem
- Inverse DFT, Vandermonde matrix inverse, reuse of fast Fourier transform