Chapter 12: Query Processing
Chapter 12: Query Processing

- Overview
- Measures of Query Cost
- Selection Operation
- Join Operation
- Evaluation of Expressions
Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation
Basic Steps in Query Processing (Cont.)

- Parsing and translation
 - translate the query into its internal form. This is then translated into relational algebra.
 - Parser checks syntax, verifies relations

- Evaluation
 - The query-execution engine takes a query-evaluation plan, executes that plan, and returns the answers to the query.
Basic Steps in Query Processing: Optimization

- A relational algebra expression may have many equivalent expressions

 - E.g., $\sigma_{\text{salary} < 75000}(\Pi_{\text{salary}}(\text{instructor}))$ is equivalent to $\Pi_{\text{salary}}(\sigma_{\text{salary} < 75000}(\text{instructor}))$

- Each relational algebra operation can be evaluated using one of several different algorithms

 - Correspondingly, a relational-algebra expression can be evaluated in many ways.

- Annotated expression specifying detailed evaluation strategy is called an **evaluation-plan**.

 - E.g., can use an index on `salary` to find instructors with salary < 75000,

 - or can perform complete relation scan and discard instructors with salary ≥ 75000
Basic Steps: Optimization (Cont.)

- **Query Optimization**: Amongst all equivalent evaluation plans choose the one with lowest cost.
 - Cost is estimated using statistical information from the database catalog
 - e.g. number of tuples in each relation, size of tuples, etc.

- In this set of slides we study
 - How to measure query costs
 - Algorithms for evaluating relational algebra operations
 - How to combine algorithms for individual operations in order to evaluate a complete expression

- In the following set of slides
 - We study how to optimize queries, that is, how to find an evaluation plan with lowest estimated cost
Cost is generally measured as total elapsed time for answering query

- Many factors contribute to time cost
 - disk accesses, CPU, or even network communication

Typically disk access is the predominant cost, and is also relatively easy to estimate. Measured by taking into account:

- Number of seeks * average-seek-cost
- Number of blocks read * average-block-read-cost
- Number of blocks written * average-block-write-cost

- Cost to write a block is greater than cost to read a block
 - data is read back after being written to ensure that the write was successful
Measures of Query Cost (Cont.)

- For simplicity we just use the **number of block transfers from disk and the number of seeks** as the cost measures
 - t_T – time to transfer one block
 - t_S – time for one seek
 - Cost for b block transfers plus S seeks
 \[b \cdot t_T + S \cdot t_S \]

- We ignore CPU costs for simplicity
 - Real systems do take CPU cost into account

- We do not include cost to writing output to disk in our cost formulae
Several algorithms can reduce disk I/O by using extra buffer space

- Amount of real memory available to buffer depends on other concurrent queries and OS processes, known only during execution
 - We often use worst case estimates, assuming only the minimum amount of memory needed for the operation is available

Required data may be buffer resident already, avoiding disk I/O

- But hard to take into account for cost estimation
Selection Operation

- **File scan**
- Algorithm **A1** (*linear search*). Scan each file block and test all records to see whether they satisfy the selection condition.
 - Cost estimate = b_r block transfers + 1 seek
 - b_r denotes number of blocks containing records from relation r
 - If selection is on a key attribute, can stop on finding record
 - cost = $(b_r/2)$ block transfers + 1 seek
 - Linear search can be applied regardless of
 - selection condition or
 - ordering of records in the file, or
 - availability of indices
- Note: binary search generally does not make sense since data is not stored consecutively
 - except when there is an index available,
 - and binary search requires more seeks than index search
Selections Using Indices

- **Index scan** – search algorithms that use an index
 - selection condition must be on search-key of index.

- **A2** (**primary index, equality on key**). Retrieve a single record that satisfies the corresponding equality condition
 - \(\text{Cost} = (h_i + 1) \times (t_T + t_S) \)
 - \(h_i \) = number of blocks needed to retrieve to consult an index entry

- **A3** (**primary index, equality on nonkey**). Retrieve multiple records.
 - Records will be on consecutive blocks
 - Let \(b \) = number of blocks containing matching records
 - \(\text{Cost} = h_i \times (t_T + t_S) + t_S + t_T \times b \)
Selections Using Indices

- **A4** *(secondary index, equality on nonkey).*
 - Retrieve a single record if the search-key is a candidate key
 - \[\text{Cost} = (h_i + 1) \times (t_T + t_S) \]
 - Retrieve multiple records if search-key is not a candidate key
 - each of \(n \) matching records may be on a different block
 - \[\text{Cost} = (h_i + n) \times (t_T + t_S) \]
 - Can be very expensive!
Selections Involving Comparisons

- Can implement selections of the form $\sigma_{A \leq V}(r)$ or $\sigma_{A \geq V}(r)$ by using
 - a linear file scan,
 - or by using indices in the following ways:

- **A5 (primary index, comparison).** (Relation is sorted on A)
 - For $\sigma_{A \geq V}(r)$ use index to find first tuple $\geq v$ and scan relation sequentially from there
 - For $\sigma_{A \leq V}(r)$ just scan relation sequentially till first tuple $> v$; do not use index

- **A6 (secondary index, comparison).**
 - For $\sigma_{A \geq V}(r)$ use index to find first index entry $\geq v$ and scan index sequentially from there, to find pointers to records.
 - For $\sigma_{A \leq V}(r)$ just scan leaf pages of index finding pointers to records, till first entry $> v$
 - In either case, retrieve records that are pointed to
 - requires an I/O for each record
 - Linear file scan may be cheaper
Implementation of Complex Selections

- **Conjunction**: $\sigma_{\theta_1 \land \theta_2 \land \ldots \land \theta_n}(r)$

- **A7 (conjunctive selection using one index)**.
 - Select a combination of θ_i and algorithms A1 through A7 that results in the least cost for $\sigma_{\theta_i}(r)$.
 - Test other conditions on tuple after fetching it into memory buffer.

- **A8 (conjunctive selection using composite index)**.
 - Use appropriate composite (multiple-key) index if available.

- **A9 (conjunctive selection by intersection of identifiers)**.
 - Requires indices with record pointers.
 - Use corresponding index for each condition, and take intersection of all the obtained sets of record pointers.
 - Then fetch records from file
 - If some conditions do not have appropriate indices, apply test in memory.
Algorithms for Complex Selections

- **Disjunction:** $\sigma_{\theta_1 \lor \theta_2 \lor \cdots \lor \theta_n}(r)$.

- **A10** *(disjunctive selection by union of identifiers)*.
 - Applicable if *all* conditions have available indices.
 - Otherwise use linear scan.
 - Use corresponding index for each condition, and take union of all the obtained sets of record pointers.
 - Then fetch records from file.

- **Negation:** $\sigma_{\neg \theta}(r)$.
 - Use linear scan on file.
 - If very few records satisfy $\neg \theta$, and an index is applicable to θ.
 - Find satisfying records using index and fetch from file.
Join Operation

- Several different algorithms to implement joins
 - Nested-loop join
 - Block nested-loop join
 - Indexed nested-loop join
 - Merge-join
 - Hash-join

- Choice based on cost estimate

- Examples use the following information
 - Number of records of student: 5,000
 takes: 10,000
 - Number of blocks of student: 100
 takes: 400
Nested-Loop Join

- To compute the theta join $r \bowtie_{\theta} s$
 for each tuple t_r in r do begin
 for each tuple t_s in s do begin
 test pair (t_r, t_s) to see if they satisfy the join condition θ
 if they do, add $t_r \cdot t_s$ to the result.
 end
 end

- r is called the outer relation and s the inner relation of the join.

- Requires no indices and can be used with any kind of join condition.

- Expensive since it examines every pair of tuples in the two relations.
nested-loop join (cont.)

- In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost is:
 \[n_r \times b_s + b_r \text{ block transfers, plus} \]
 \[n_r + b_r \text{ seeks} \]

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to \(b_r + b_s \) block transfers and 2 seeks

- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - 5000 \times 400 + 100 = 2,000,100 block transfers,
 - 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - 10000 \times 100 + 400 = 1,000,400 block transfers and 10,400 seeks

- If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block transfers.

- Block nested-loops algorithm (next slide) is preferable.
Block Nested-Loop Join

Variant of nested-loop join in which every block of inner relation is paired with every block of outer relation.

```plaintext
for each block \( B_r \) of \( r \) do begin
    for each block \( B_s \) of \( s \) do begin
        for each tuple \( t_r \) in \( B_r \) do begin
            for each tuple \( t_s \) in \( B_s \) do begin
                Check if \((t_r, t_s)\) satisfy the join condition
                if they do, add \( t_r \cdot t_s \) to the result.
            end
        end
    end
end
end
```
Block Nested-Loop Join (Cont.)

- Worst case estimate: \(b_r * b_s + b_r \) block transfers + 2 * \(b_r \) seeks
 - Each block in the inner relation \(s \) is read once for each block in the outer relation

- Best case: \(b_r + b_s \) block transfers + 2 seeks
Indexed Nested-Loop Join

- Index lookups can replace file scans if
 - join is an equi-join or natural join and
 - an index is available on the inner relation’s join attribute
 - Can construct an index just to compute a join.
- For each tuple t_r in the outer relation r, use the index to look up tuples in s that satisfy the join condition with tuple t_r.
- Worst case: buffer has space for only one page of r, and, for each tuple in r, we perform an index lookup on s.
- Cost of the join: $b_r (t_T + t_S) + n_r * c$
 - Where c is the cost of traversing index and fetching all matching s tuples for one tuple or r
 - c can be estimated as cost of a single selection on s using the join condition.
- If indices are available on join attributes of both r and s, use the relation with fewer tuples as the outer relation.
Merge-Join

1. Sort both relations on their join attribute (if not already sorted on the join attributes).
2. Merge the sorted relations to join them
Merge-Join (Cont.)

- Can be used only for equi-joins and natural joins
- Each block needs to be read only once (assuming all tuples for any given value of the join attributes fit in memory)
- Thus the cost of merge join is:

\[
b_r + b_s \text{ block transfers} + \lceil b_r / M \rceil + \lceil b_s / M \rceil \text{ seeks}
\]

where 2M is the available memory

- + the cost of sorting if relations are unsorted
Hash-Join

- Applicable for equi-joins and natural joins.
- A hash function h is used to partition tuples of both relations.
- h maps $JoinAttrs$ values to $\{0, 1, \ldots, n\}$, where $JoinAttrs$ denotes the common attributes of r and s used in the natural join.
 - r_0, r_1, \ldots, r_n denote partitions of r tuples
 - Each tuple $t_r \in r$ is put in partition r_i where $i = h(t_r[JoinAttrs])$.
 - s_0, s_1, \ldots, s_n denotes partitions of s tuples
 - Each tuple $t_s \in s$ is put in partition s_i, where $i = h(t_s[JoinAttrs])$.

Hash-Join (Cont.)

Diagram showing the process of hash join with partitions of relations r and s.
Hash-Join (Cont.)

- r tuples in r_i need only to be compared with s tuples in s_i.

Need not be compared with s tuples in any other partition, since:

- an r tuple and an s tuple that satisfy the join condition will have the same value for the join attributes.
- If that value is hashed to some value i, the r tuple has to be in r_i and the s tuple in s_i.
Hash-Join Algorithm

The hash-join of r and s is computed as follows.

1. Partition the relation s using hashing function h. When partitioning a relation, one block of memory is reserved as the output buffer for each partition.

2. Partition r similarly.

3. For each i:

 (a) Load s_i into memory and build an in-memory hash index on it using the join attribute. This hash index uses a different hash function than the earlier one h.

 (b) Read the tuples in r_i from the disk one by one. For each tuple t_r locate each matching tuple t_s in s_i using the in-memory hash index. Output the concatenation of their attributes.
Hash-Join algorithm (Cont.)

- The value \(n \) and the hash function \(h \) is chosen such that each \(s_i \) should fit in memory.
 - Typically \(n \) is chosen as \(\lceil \frac{b_s}{M} \rceil \times f \) where \(f \) is a "fudge factor", typically around 1.2
 - The probe relation partitions \(s_i \) need not fit in memory
Evaluation of Expressions

- So far: we have seen algorithms for individual operations
- Alternatives for evaluating an entire expression tree
 - **Materialization**: generate results of an expression whose inputs are relations or are already computed, *materialize* (store) it on disk. Repeat.
 - **Pipelining**: pass on tuples to parent operations even as an operation is being executed